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I.  INTRODUCTION 

Aerodynamic or inertial asymmetry of a fin-stabilized non- 

rolling projectile results in the round's trimming to a fixed 

attitude once launch disturbances damp out.  This preferential trim 

produces a continuously increasing divergence of the flight path from 

the intended trajectory. To avoid this effect, the projectile is 

given some small roll rate, either in-bore or in free flight.  The 

trajectory of a rolling projectile still suffers an aerodynamic 

jump due to the asymmetry, but the continuous divergence is eliminated. 

Murphy and Bradley have demonstrated that the magnitude and direction 

of the aerodynamic jump are related not only to the steady-state roll 

rate but also to the variation in roll rate between launch and steady- 

state values. Their analysis assumes that the projectile enters free 

flight with roll rate equal to its in-bore value.  This assumption 

neglects the perturbation of the roll due to transit of the muzzle blast. 

To produce a rolling moment on a fin-stabilized projectile, 

differential fin cant is generally used.  In the reverse flow of 

the muzzle blast, the direction of the rolling moment is opposite to 

that in free flight.  As a result, the roll rate decreases from the 

launch value.  For projectiles fired from smoothbore guns, a reverse 
2 

spin may be produced.  Fans1er and Schmidt extended the computations 

of Murphy and Bradley to include the case of projectiles spinning up 

to a positive free flight value from an initially negative roll rate. 

Additionally, Fansler and Schmidt calculated the transverse linear and 

angular momentum imparted by the muzzle blast to a projectile with an 

2. C, H, Murphy and J.  W. Bradley,   "Jump Due to Aerodynamic 
Asymmetry of a Missile with Varying Roll Rate, " BRL R 1077, 
U.  5. Army Ballistic Research Laboratories, Aberdeen Proving 
Ground,  Maryland,  May 1959, AD 219312. 

2.    K.  S.  Fansler and E.  M.  Schmidt,   "The Influence of Muzzle Gas- 
dynamics upon the Trajectory of Fin-Stabilized Projectiles, " 
BRL R 1793,  U.  S. Army Ballistic Research Laboratories, Aberdeen 
Proving Ground, Maryland, June 1975, AD BOO 5379L. 
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aerodynamic asymmetry.  In a sample case, they demonstrated that the 

increase in jump due to negative roll rate is cancelled by the component 

of jump due to the projectile transverse velocities imparted by the 

muzzle blast.  However, since the integration of the equations of motion 

was performed numerically, a closed-form solution was not obtained, and 

no general statement regarding this cancellation effect could be made. 

The present report used an analytical approach to obtain a closed- 

form expression for the jump of a slightly asymmetric, fin-stabilized 

projectile due to muzzle blast.  The flow is modelled using a quasi- 
2 

steady approximation which provides for direct evaluation of the gas- 

dynamic forces on the projectile during launch.  From the resulting 

loading history, the motion of the projectile through the muzzle blast 

and into free flight is determined.  Once the initial dynamics of the 

round are known, its subsequent trajectory may be obtained by numerically 
1 2 

integrating the equations of motion ' .  In the present report, the 

expression for the trajectory deflection due to asymmetry is expanded 

as a Taylor series and compared to the results of the numerical 

integration.  Substitution of this series into the jump equation pro- 

vides a general prediction of the muzzle-blast-induced jump of asymmetric 

projectiles. 

II.  ANALYSIS OF GASDYNAMIC LOADINGS 

At launch, a fin-stabilized projectile is subject to gasdynamic 

loadings in two distinct muzzle flows:  the in-bore expansion and 

the muzzle blast, Figure 1.  In this report, the analysis of Fansler 
2 

and Schmidt is used to describe the muzzle flow.  They modelled the 

in-bore flow as a one-dimensional, unsteady expansion and the external 

flow as a quasi-steady , axially symmetric jet flow.  Transverse gas- 

3.    K.  Oswatitsch,   "Intermediate Ballistics," Deutsche Luft und 
Raumfahrt FB 64-37,  DVD Bericht 358,  December 1964,  AD 473249. 
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Figure 1. Sources of Gasdynamic Loadings During Launch 



4 
dynamic loads are assumed to be generated only upon fin surfaces . 

These loadings are computed from the local flow properties and two- 

dimensional, thin airfoil theory without correcting for flow inclination, 

tip effects, or wing-body interference.  These approximations eliminate 

the influence of fin and projectile geometry and produce an upper 

bound upon muzzle blast loadings. 

Using this model, the loadings upon the fins may be integrated 

through the muzzle blast to obtain an expression for the momentum 
2 

transferred to the projectile.  Fansler and Schmidt determined non- 

dimensional impulse functions that are independent of the projectile 

and flow geometry and vary only with propellant gas Mach number prior 

to shot ejection, V /c , Figure 2.  Here V is the projectile 

0.5 r 

MUZZLE JET, 

0.2   0.4   0.6   0.8    1.0 
Vp/C, 

Figure 2. Comparison of In-bore and Muzzle-Jet Impulse 
[for d/D = 1] 

4.    W.  Gretler,   "Intermediate Ballistics Investigations of Wing 
Stabilized Projectiles3" German Air and Space Research Report 
67-92,  FSTC-HT-23-22-69-72,   1967. 
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velocity and c. is the prelaunch propellant gas speed of sound. The 

total impulse is the sum of the in-bore and muzzle jet function values, 
1 = P ♦ (d/D) P, . Here d is the distance from obturator to fin and 

O D 

D is the gunbore diameter. This function is used to calculate the 

transverse angular and linear velocities and reverse spin imparted to 

the projectile during transit of the muzzle gases. 

The coordinate systems used in this report are standard in 

ballistic calculations , Figure 3. The nonrolling coordinates are 

XeiYf,Z§- EARTH FIXED SYSTEM 
X.Y.Z - MISSILE FIXED.NON-ROLLING SYSTEM 

a, ß       - ANGLES OF ATTACK AND SIDESLIP RESPECTIVELY 

Figure 3. Coordinate Systems 

used to describe the projectile angular motion, while the earth-fixed 

coordinates are employed in the solution for projectile jump. At 

separation from the gun, the projectile velocity vector is assumed to 

lie along the X axis. Since it is of interest to examine muzzle 

blast effects caused by asymmetry, we assume 

w v 
~ . g = -/ = 3/  = m   m  0 
m   m   m    m   V V 

P   P 

11 



where the subscript m referes to values immediately at separation. 

Here the prime superscript denotes rate of change of the variable 

with respect to distance in calibers traveled by the projectile. 

Further, we restrict the analysis to projectiles launched from smooth- 

bore guns: 

4   = o . m 

For simplicity, the aerodynamic asymmetry to be treated is 

postulated as two opposing fins, inclined at an angle e (in the 

same sense for both fins) with respect to their normal orientation. 

The differential fin cant angle, 2 <S, Figure 4, between opposing fins 

B«FIN   CANT   ANGLE 
r0« DISTANCE  FROM PROJECTILE  AXIS TO FIN C.R 

Tf V- 
Figure 4. Illustrating Differential Fin Cant 

is unaltered and the steady state roll rate, $J   is maintained.  The 

transverse linear velocity imparted to the projectile in the muzzle 
2 

flow is computed to be: 

where 

£ ♦ i / = (Y ♦ 1) p* 2A D 

fM V2 

P P 

P  (e e i(*e
+1,)), (1) 

<J> = initial orientation of asymmetric force in free flight, 

v = muzzle-blast imparted velocity in Y direction 

w = muzzle-blast imparted velocity in Z direction 

P* = pressure at muzzle for critical conditions 

12 



<f) + TT = orientation of asymmetric force in the muzzle 

jet 

Af    = plan area of one fin 

M     = mass of projectile 

The transverse angular velocity is 

*y vp 

where 

I   ■   transverse moment of inertia 

A  ■   moment arm of force on fins about the center 

of gravity. 

Finally, the reverse spin imparted by the muzzle blast due to differ- 

ential fin cant with an equivalent moment arm length r is 

A ' = - (Y+l) P* n Af ° D * P 6 (3) 
o r I V Z 

x p 

where 

I ■ axial moment of inertial 

6 = angle of differential fin cant 

III.  THE JUMP EQUATIONS 

The dynamic state of the projectile upon leaving the muzzle blast 

region and entering into free flight defines its subsequent trajectory 

permitting the computation of jump due to muzzle-gas effects. The 

deviation from its intended trajectory is 

Y  +iZ 
0 = lim — - (4) 

X + * xe 
e 

13 



where the coordinate system is given in Figure 3. Here the influence 

of gravity is not considered. 

Murphy and Bradley show that the aerodynamic jump is approximately 

Gj • Jr «o+ JA <vo (5) 

The first term on the right hand side is the jump due to the initial 

transverse angular momentum given the projectile by the muzzle blast. 

For the asymmetric projectile, £7 is given by Equation (2).  The 
0 1 

expression for the coefficient in the first term is 

Jr/ 2  f 

P        a 

While the first term in Equation (5) is applicable to both symmetric 

and asymmetric projectiles launched with an initial angular velocity, 

the second terra involves only the asymmetry of the projectile.  Here 

C. y  C  are the free flight lift and static moment coefficients. 
La   a 

The expression for J is 

pS£     (r a      e  , 1(fre m J
A 

= TTT 
(C

N  - —q— > " e *    ' (7) 
p % Ma 

and 

where 

<j> ' =  initial free flight roll rate, Equation (3) 

<$>J = steady state roll rate 

6     p       F 

C = roll damping coefficient 

■ - [PSÄ/2M 1 [(Ix/Hl
2)" C£ ♦ C ]   (9) 

P 

C^ , C    = roll moment coefficients due to roll 
P   *$ 

and fin cant respectively 

14 



The expression for <J> will be given and discussed in detail in the next 

section. 

To calculate the total deviation of the projectile from its intended 

trajectory, one must also consider the transverse linear velocity im- 

parted to the projectile by the muzzle blast.  Adding this effect to the 

aerodynamic jump, one obtains for the total deflection: 

0 = VVp + JC' 5"o + (JA V-> • (10) 
Using Equation (1) and (2), one obtains 

cL 
0 " t1 + i-2 I 1 &♦« P* 2Af -^-T P  teei(*e*

w)] 
Ma MpVp 

+ J
Atv*»]   • en) 

IV.  APPROXIMATION OF * 
t 

The expression for * is 

C St \ *t ■  lim (■—)    /o
L    fQ exp  (i   <0  dst    dst (12) 

st "*" °° 

where the roll  angle is given as 

♦ «   (*J/Q  {st"   U^VO   -  1]     [exp(-stM]}     , (13) 

and 

st  = Cs 

s ■ distance along the trajectory in calibers. 

In this section, a series approximation to 4>  (A,B) is given in 

terms of the parameters: 

B = ♦0,/*./  ' 

15 



Murphy and Bradley have shown that the integral in Equation (12) may be 

transformed to 

•* (A,B) = iA / °° exp [Af(r)] dr, (14) 
t o 

where 

f (r) ■ - (r + i (B-l) [exp (-ir)-l]}  .    (15) 

They further obtained an expression for *  (A,0) when A is large: 

*t (A,0) = [(1+i) (TTA)
%
/2] ♦ (i/3) (16) 

For the current application, it is necessary to consider small, 

but non-zero, values of B; thus, * (A,B) is expanded in a Maclaurin 

series: 

d$ d2* 
•t(A.B) m  ♦ (A,0) ♦ gy- |    B ♦ h —+  |    B2 + ..      (17) 

B-0      dBZ 
B=0 

Differentiating $ with respect to B, we obtain 

d$        °° 
3B^=A2 /  [exp(-ir)-l] exp  [Af(r)]dr        (18) 

Differentiating # again, we obtain 

d2*t       3 " 2 
—i. = - i A0 / [exp(-ir)-l]z exp [Af(r)] dr       (19) 
dB^ o 

For large A and small B, the main contribution to the integral in 

Equation (14) will occur when r is small.  When r is large, the integrand 

consists of small oscillations about zero, which tend to cancel out in 

the integration.  For B=0, Equation (15) may be expanded in series form: 

f(r) = - (ir2/2) - (r3/6) ♦ (ir4/24) ♦ (r5/120) + ...    (20) 

16 



Using this series, we can write 

where 

exp [Af(r)] = [exp(-iAr2/2)] exp (Au), (21) 

u = - (r3/6) ♦ (ir4/24) + (r5/120) ♦   (22) 

In turn, the term exp (Au) is expanded in series.  While Murphy and 

Bradley needed to consider only two terms in the expansion, Equation (21), 

to obtain their approximation for <fr  (A,0), the present authors carried 
9 

the expansion out to the r term for their approximation to * (A,B). 

Finally, expanding 

exp(-ir) - 1 * - ir - (r2/2) ♦ (ir3/6) ♦ r4/24,        (23) 

Equations (21) and (23) may be substituted into Equations (17), (18), 

and (19).  By a transformation of variable, we obtain integrals of the 

form _ 

/ r\m  exp (-in ) dn 
o 

Integrating this integral around the contour which includes the 

positive part of the real axis and the line 45° from the real axis, 

we obtain 
r    m   ,  . 2. ,   exp [-i(m+l)7r/4] „ jn+K 
/ i    exp(-m ) dn = —*—i—i <      J r (-—) 

where r is the well-known gamma function. 

By evaluating the gamma function and neglecting negative powers 

of A, <t> is 

♦t " {[(l + i)(TrA)J5/2] * [i/3]} ♦ [-A * (2i/3)]B 

♦ {[(l-iJCirA)^ A/4] - [A/3] ♦ [ (1+i) (TTA)^/48] + [2i/135]}B2.    (24) 

This approximate expression for * is compared with the exact numerical 
2 

computations in Figures 5 and 6. The approximation is quite good up 

to B - ± 0.1 but fails for greater absolute values of B as A becomes 

large. 

17 
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In Equation (24), it is apparent that the approximation becomes worse 

for large A since the leading term in the factor that multiplies 

B is A^  '  . The limitation does not affect the analysis since B 

will seldom have a magnitude greater than 0.1. For instance, the 

value of B found for a 5.8mm flechette launched from a smoothbore tube 

is only -0.0403. 

V.  DEVIATION CAUSED BY MUZZLE BLAST ON ASYMMETRIC PROJECTILES 

The total deviation of the projectile is given by Equation (11); 

however, even if the projectile could be launched in an environment 

19 



free of muzzle blast, it would still experience a jump due to asymmetry 

equal to J.[$ (A,0)/$J ].  Thus, the contribution of muzzle blast to 

the total deviation is defined to be: 

nb 
= e - [JA$t (A.°)/0   • ^ 0 

] 

From Equation (24), the lead terms of <J> - *  (A,0) are 

*t - *t (A,0) * - AB {l-[2i/(3A)] - [(l-i)(7rA)^ B/4]} 

=  - ABT. (26) 

Thus, from Equation (7) and (11) 

CL 

mo     LM  x r M   z 
a p p 

C        C 
pSJt    r       n       La      Me  .       i<b    ABT ,_ 

p e M        N Y» r a        e 

2 
According to linear theory, 

CM     A 

CN     * 
> 

where 

A = e.g. - c.p. separation of asymmetric fin 

* A. 

Substituting into Equation (27), 

C 

W   [1 + A Tl ee^e <(Y*U P* 2A 
a p p 

+ 
pSÄ r   ABT 
2M  N CM  — >  • (28) 

P  e  <j> ' 

20 



Examine the right hand term within the braces in Equation (28): 
■ 

pS* r   ABT _ PS£     1  yo r2q. 

P   e  4L     p   e   dL 

From Equations (8) and (9), 

,2 

yielding: 

C4£ = C£ 6 r (pSÄ)/2Ix), (30) 
6 

I     CN 

P       * 
2 

Again, according to linear theory, 

CN 
« „ 2 t . (32) 

Substitution of Equations (3) and (32) into Equation (31) yields 

Y = - (Y+l) P* 2 A —2-_ P T. (33) 
1  M V Z 

P P 

Equation (28) becomes: 

0n,b = - «> + of f] (Y+1) ** 2Af 7T^ P } U"T] eel*E  (34) M M  V 
a p p 

The quantity in the left hand brace is identical to the coefficient 
2 

in the deflection equation describing the muzzle-blast-induced 

deviation of a symmetric projectile launched at an angle of attack, I   . 

Hence, by evaluating the magnitude of 1-T, a direct comparison can be 

made between the sensitivity of symmetric and asymmetric projectiles 

to muzzle blast.  From Equation (26), 

1-T- [2i/(3A)] ♦ [(1-i) (TTA)** B/4] . 

21 



The value of A is frequently near 25 while B is on the order of 0.05; 

thus, the magnitude of 1-T is approximately 0.1. Since a typical 

muzzle blast deviation of a symmetric projectile is on the order of 

0.1 mil deflection per degree of initial angle of attack, the 

sensitivity of the asymmetrical projectile would be about 0.01 mil 

deflection per degree of asymmetric fin deflection. 

VI.  SUMMARY AND CONCLUSIONS 

Using a simple approximation, a closed form expression for the 

effect of muzzle blast on the jump due to asymmetry of fin-stabilized 

projectiles is obtained. The analysis shows that muzzle blast does 

not significantly alter this portion of the total jump. 

ACKNOWLEDGEMENT 

The authors wish to thank Mr. James Bradley of the Exterior 

Ballistics Laboratory for his assistance in this analysis. 

22 



REFERENCES 

1. Murphy, C. H. and Bradley, J. W., "Jump Due to Aerodynamic 
Asymmetry of a Missile with Varying Roll Rate," BRL R 1077, 
U. S. Army Ballistic Research Laboratories, Aberdeen Proving 
Ground, Maryland, May 1959, AD 219312. 

2. Fansler, K.S. and Schmidt, E. M., "The Influence of Muzzle 
Gasdynamics upon the Trajectory of Fin-Stabilized Projectiles," 
BRL R 1793, U.S. Army Ballistic Research Laboratories, Aberdeen 
Proving Ground, Maryland, June 1975, AD B005379L. 

3. Oswatitsch, K., "Intermediate Ballistics," Deutsche Luft und 
Raumfahrt FB 64-37, DVL Bericht 358, December 1964, AD 473249. 

4. Gretler, W., "Intermediate Ballistics Investigations of Wing 
Stabilized Projectiles," German Air and Space Research Report 
67-92, FSTC-HT-23-22-69-72, 1967. 

23 





LIST OF SYMBOLS 

A- planform area of single fin 

c local sound speed 

C roll damping coefficient 

C roll moment coefficient due to roll 
P 

C0 roll moment coefficient due to fin cant 

C ,CT projectile lift coefficient and derivative with respect 
a 

to a 

CM projectile static moment coefficient 
a 

CM moment coefficient due to fin deflection 
e 

Cj. normal force coefficient due to fin deflection 
e 

d distance from obturator to fin c.p. 

D diameter of gun bore 

1,1 longitudinal and transverse moments of inertia x y 

J , J£ , Jfe jump coefficients 

I shaft diameter of projectile 

L dimensionless fin lift function 

M Mach number or moment 

M mass of the projectile 
P 

n number of fins 

p pressure 

P dimensionless momentum function 

P , P, muzzle jet and in-bore momentum impulse 

s distance along trajectory in calibers (s » x /£) e 
2 

S reference area of projectile (S * TT£ /4) 

t time (t=0 corresponds to obturator passing muzzle) 
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LIST OF SYMBOLS   (Continued) 

V projectile velocity 

w transverse velocity in Z direction 

X,Y,Z        coordinates 

ot, $ angles of attack and sideslip in non-rolling coordinate 

system 

Y ratio of specific heats 

6 differential fin cant angle 

A, Af        c.p. - e.g. separation in reverse and forward flow, 

respectively 

e magnitude of asymmetric fin cant angle 

£ complex angle of yaw ß + i a 

6 angular deflection of projectile from boreline 

0. aerodynamic jump:  angular deflection from particle 

trajectory (gravity and drag determined) due to 

aerodynamic forces 

G , angular deflection of projectile due to muzzle blast 

p density 

$ roll angle 

<J> initial, free flight orientation of asymmetric fin force 

Subscripts 

e denotes earth-fixed coordinates 

o denotes projectile properties immediately after 

penetration of the muzzle blast 
00 denotes ambient or steady state conditions 

Superscripts 

( ) denotes dimensionless quantities 

( )7 denotes derivative with respect to s 

( )* denotes critical or sonic conditions 
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